If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=n^2+n-992
We move all terms to the left:
0-(n^2+n-992)=0
We add all the numbers together, and all the variables
-(n^2+n-992)=0
We get rid of parentheses
-n^2-n+992=0
We add all the numbers together, and all the variables
-1n^2-1n+992=0
a = -1; b = -1; c = +992;
Δ = b2-4ac
Δ = -12-4·(-1)·992
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-63}{2*-1}=\frac{-62}{-2} =+31 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+63}{2*-1}=\frac{64}{-2} =-32 $
| n+7.25/4=2.81 | | 1/a=2 | | 10n2+9+3n=3n | | 4y+2y-34=6 | | -6+4v=22 | | X-9x-3=33 | | 3e-8=(2e-4) | | -11.4+3.8=x | | X+9x+3=33 | | 1.5^y=34 | | -98=4x-5 | | x/11=x/4-7 | | -7x-(5x-7.7)+6=-(-3x+1.9) | | (5+w)(4w-3)=0 | | 22+2y=6 | | 6-3x=-3(1+2x) | | 1450=1200y/0.8y | | A=7x3 | | 3(-2x+1)-12=-3(1+3x) | | -3x-4(1+5x)=-4-4x | | 2(3x+5)=25+x | | 5x-5+3=-17 | | 11-6x=7(1-x) | | -11-6x=7(1-x) | | 15-4=x/12 | | -172/45=x-2/9 | | 7(-2+2x)=7x+21 | | 5(1-2x)-1=-5x-21 | | 22-x=4(5x-5) | | 5(4x-2)=-6x+2(3+12x) | | 5(4x-2)=-6x+2(3+12x | | 7+d-12=40 |